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ABSTRACT
We introduce the novel research problem of task recognition in
daily life.We recognize tasks such as project management, planning,
meal-breaks, communication, documentation, and family care. We
capture Cyber, Physical, and Social (CSP) activities of 17 participants
over four weeks using device-based sensing, app activity logging,
and an experience sampling methodology. Our cohort includes
students, casual workers, and professionals, forming the first real-
world context-rich task behaviour dataset. We model CPS activities
across different task categories, results highlight the importance
of considering the CPS feature sets in modelling, especially work-
related tasks.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing.
KEYWORDS
Task recognition, mobile sensing, pervasive computing, intelligent
assistant, productivity
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1 INTRODUCTION
Imagine a future personal digital assistant that can identify and
track our tasks ubiquitously, whenever and wherever it is required
based on our context. Such intelligent applications would be bene-
ficial not only to track human tasks in daily life but also to improve
work productivity and overall well-being.

If tasks can be recognised and tracked, support systems, such as
digital assistants, recommender systems, or search engines can be
adapted to better help humans complete their tasks. An intelligent
assistant could monitor the progress and completion of a task, even
encourage someone to switch from their current task to one that
is critical. Supporting task progression and completion is the last
mile in search interactions [30], and more generally in supporting
digital assistant applications. Characterising and modelling tasks
are the first steps to enable this support.

Recognising human tasks in daily life is non-trivial. The main
challenges lie in the noisy environment and dynamics of human
activities as well as the wide range of tasks human undertake across
different professions.

A task can be characterized by many factors, such as human
activities, actions, mobility, social encounters, and online behaviors.
We, therefore, approach task recognition with a Cyber-Physical-
Social (CPS) modelling paradigm [22–24]. We hypothesize that
tasks can be recognised from modelling the underlying signals of
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app and online (cyber), mobility [21] and locomotion (physical) and
interaction with others (social).

To study our hypothesis, we have generated a task behaviour
dataset of logs captured over a four-week period from partici-
pants including professionals and non-professionals. We capture
smartphone sensor and app foreground and background data, lap-
top/desktop logs of apps running, along with participant annota-
tions of performed tasks based on two recall mechanisms: in-situ,
recalling tasks in the past hour; and retrospective, recalling at the
end of the day tasks which were performed that day.

To the best of our knowledge, this is the first work aimed at recog-
nizing daily tasks, utilizing CPS signals. Our research contributions
are as follows:

• A new problem formulation, and a novel framework to cap-
ture and perform task recognition.

• Modeling of CPS activity to derive characteristics of a wide
range of tasks.

• Analysis of underlying CPS activity signals in modelling task
behaviours across different cohorts of participants.

2 RELATEDWORK
The prediction of user tasks using human-computer interaction and
machine learning was described in 2005 [27]. The authors identified
a task by observing an activity sequence (e.g., opening a file, saving
a file, sending an email, cutting and pasting information). Task goals
can be achieved through the support of human activities, in order
to progress and complete a task [3, 4, 12]. People can complete
tasks more easily when they have well-defined action plans which
is difficult to achieve [1, 8, 13, 16, 18]. To provide automatic action
plans, a Genies workflow is presented in [11] that combines the
power of crowd with collaborative refinement and automation.

More recently, sensors and behavioral data have been used to ad-
dress the modeling and prediction of time-based reminders [9], the
estimation of the duration of tasks [31], and the modeling of context
and user intent for context-aware recommender systems [28]. The
discovery of contextual information from daily routines has been
previously addressed by [19]. Task phase recognition and progress
estimation by modeling highly mobile workers in a large hospital
complex was proposed [26]. Here, approximation of localizations
from WiFi access points and smartphone accelerometer sensors
were used. A machine-learning-based approach to task boundary
identification was presented by [10].

Others focused on mining behavioral rules from smartphones
in order to manage incoming calls [25]. Sensor data and machine
learning have been exploited to construct attention management
systems [2] so as to predict when a notification should be sent
and to which device [17] in order to improve the user experience.
Recently, Ren et al. investigated how to predict users’ demographics
by considering their CPS behaviors [23].

However, the CPS aspects which could further describe a user
task were not considered. To the best of our knowledge, task recog-
nition through ubiquitous sensing is yet untapped, especially by
incorporating CPS contexts in behavior modeling of mobile users.
Therefore, the contributions of this paper will enable future intelli-
gent and assistive applications to support daily human tasks.

3 PROBLEM FORMULATION
We formulate the problem of recognizing daily tasks based on CPS
activities of human participants. Signals can be sourced from smart
devices (e.g., phones, tablets, wearables, desktop computers, and the
Internet of Things). Ground truth labels of daily tasks performed
by the participants are captured through in-situ annotations. Our
aim is to recognise tasks by characterizing the following signals.

Cyber Capture of a user’s online activities, composed of the cy-
ber content and a timestamp. In our research, we investigate Social
Networking, Utilities, Communication & Scheduling, News & Opinion,
Entertainment, Design & Composition, Business, Reference & Learn-
ing, Software Development, and Shopping. We define each activity
as a binary variable 𝑓𝑐 to represent whether users are involved in
the corresponding activity at a certain time. Thus, a user’s cyber
activity is defined as a set of records: < 𝑢, 𝐹𝑐 , 𝑡𝑖 >, where 𝑢 is the
user, 𝑡𝑖 is the timestamp, and 𝐹𝑐 is the set of cyber features, denoting
the user’s involvement in the above mentioned cyber activities.

Physical These include a user’s physical activities in the spatio-
temporal domain. In our research, we investigate accelerometers,
gyroscopes, magnetometers as well as derived data such a transport
mode, and semantic labels of visited locations (e.g., home, office and
train stations). Thus, a user’s physical activity is defined as a set
of records: < 𝑢, 𝐹𝑝 , 𝑡𝑖 >, where 𝐹𝑝 is the set of physical features,
denoting the users’ physical activities as mentioned. The details of
each feature 𝑓𝑝 ∈ 𝐹𝑃 are presented in Section 5.

Social These include information about a user’s social interac-
tions, including direct interactions with other people. In our re-
search, interactions are captured through WiFi/Bluetooth access
points, and audio noise levels In addition, in-situ annotations, which
characterize the degree of environment and social encounters with
others. A user’s social activity is defined as a set of records: <
𝑢, 𝐹𝑠 , 𝑡𝑖 >, where 𝐹𝑠 is the set of social features, denoting the users’
social environment as mentioned above. Again, details of the social
features used in this study are presented in Section 5.

Tasks These are the daily tasks performed by users. There are
existing categories of tasks [29] including travel, physical, educa-
tion, meals/breaks, communication, planning, project, documen-
tation, low-level, admin and management, finance, IT (software
or hardware-related tasks), customer care and problem solving.
All tasks under each task category are obtained via an Experience
Sampling Method (ESM) [6, 7, 14].

Task Boundary Construction Since task descriptions (includ-
ing their CPS activities) are unique to each user, the boundary of
a task and granularity of contextual information can be different
for the same experienced task when a mobile user is providing a
corresponding annotation. The annotation that the user provides
can be associated with its relative perception upon answering a
short questionnaire.

Task Recognition Given a user CPS activity 𝑢 at time 𝑡 , the
recognition of the task 𝑎 currently being undertaken is defined as:

𝑔(𝐹𝑐 , 𝐹𝑝 , 𝐹𝑠 ) → 𝑎 (1)

where 𝑔(·) is a function that establishes a mapping between a task
and its CPS activities denoted as 𝐹𝑐 , 𝐹𝑝 and 𝐹𝑠 , respectively.
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4 PROPOSED FRAMEWORK
In this section, we propose an end-to-end framework (see Figure 1)
to recognize daily tasks for mobile users based on their CPS activ-
ities. Specifically, our framework provides a detailed solution for
intelligent task recognition leveraging the CPS signals collected
through smart devices used in our daily lives. These signals are then
processed in different modules of our framework to learn and rec-
ognize daily tasks. The key components of our framework include
task capture, task boundary construction, CPS feature construction,
CPS-based task modeling and learning which are discussed in the
subsections 4.1 - 4.4.

Figure 1: Conceptual framework for task recognition.

4.1 Task Capture: In-situ Annotations
The ESM-based acquisition of task annotationswas achieved through
in-situ surveys, triggered by a brief questionnaire through a mo-
bile app. The in-situ survey is at 𝑡 ; the annotation is conducted at
time 𝑡𝛿 , corresponding to the task and its contextual information
within the boundary of 𝑡𝛽 and 𝑡 ; 𝛽 is the estimated boundary of a
performed task that can be inferred from the ESM annotation pro-
cess, see Figure 2. The approach was chosen in order to minimize
interruption of daily activities, and hopefully reduce reliance on
participants’ ability to accurately recall earlier experiences [5].

4.2 Task Boundary Construction
A participant can elect to answer a questionnaire later when they
have more free time (before or after the next hourly mobile app
notification for ESM survey). Our framework applies a rule-based
function. Any timestamped in-situ annotations correspond to the
previous hour time segment. Note, this rule is robust towards any
temporal shift (i.e. changing timezones), which occurred with a
number of our participants.

Figure 2: Task annotation acquisition through ESM.

4.3 CPS Feature Construction
This module utilizes sensing logs from participants’ smart devices
to construct CPS features associated with a task. Since raw sensing
signals are timestamped and can be streamed from these smart
devices, we define the following general process for CPS feature
construction. All features can be constructed based on the align-
ment of tasks and the time segments defined within the scope of
annotation fusion. Several functions can be applied to these raw
signals to construct three feature sets:

• 𝐹𝑐 : consisting of the features that are related to a participant’s
cyber activities, such as smartphone app usage patterns and
categories of visited web domains.

• 𝐹𝑝 : consisting of the features that are related to a partici-
pant’s physical movement, locations (including their seman-
tics), mobility (e.g. accelerometer, gyroscope and magne-
tometer signals), transportation mode, change of location
clusters, and transportation hot-spots.

• 𝐹𝑠 : consisting of the features that are related to a participant’s
social environment; social profiles and interactions with
other individuals on the tasks (e.g. relative noise level around
a participant), indication of proximity to other individuals
or sensing devices, direct interaction with an individual, or
the number of people involved in completing a task.

Table 1: CPS feature sets used in modelling.

Feature Set Features

Cyber

Binary features of uncategorized, social networking, utilities,
communication & Scheduling, news & opinion, entertainment,
design & composition, business, reference & learning, software
development, shopping within the scope of one hour before the
task and during the task.

Physical
Statistical features from sliding window model on magnitudes
of accelerometer, gyroscope, and magnetometer readings.

Social
The count of unique ID of wireless access points (i.e., BSSID)
and statistical features from sliding window model on noise
level.

Task Labels [29]
Travel, physical, education, meals and breaks, communication,
planning, project, documentation, low-level, admin andmanage-
ment, finance, IT (software or hardware-related tasks), customer
care, or problem-solving.
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Note that the statistical features about CPS activities (see Table 1)
correspond to the following temporal features extracted from a
sliding window of size 𝛿 = 300 seconds and 50% overlap: mean,
median, maximum, minimum, standard deviation, interquartile range
(IQR), and root mean square (RMS). Specifically, in each window
for 𝐹𝑝 construction, the magnitudes of accelerometer, gyroscope,

and magnetic field are computed as
√
𝑥2𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑦2𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑧2𝑠𝑒𝑛𝑠𝑜𝑟 .

Moreover, the noise level and magnitude values from accelerometer,
gyroscope, and magnetometer readings are normalized using min-
max normalization.

4.4 CPS-based Task Modeling and Learning
The three feature sets are integrated to build a CPS-based task
model. To build the model, the temporal dependency of feature sets
before, and during the task were considered in our experiment. CPS-
based modeling can be applied to any of the sets (i.e., 𝐹𝑐 , 𝐹𝑝 , 𝐹𝑠 ). As
shown in the previous section, we expanded 𝐹𝑐 to include the cyber
features one hour before, and during a task is performed, while a
sliding window model is applied to extract statistical features from
smartphone sensors for 𝐹𝑝 and 𝐹𝑠 . The combination of 𝐹𝑐 , 𝐹𝑝 and
𝐹𝑠 produces the final CPS feature set.

The CPS feature set is then used to build a set of classifiers.
The learning process includes training, testing, and an internal
evaluation processes to select the best classifier, based on certain
metrics, such as accuracy and 𝐹1-score.

5 EXPERIMENTS AND EVALUATION
We discusses our experimental setup and evaluate our task recog-
nition framework.

5.1 Mobile Data Collection and Task Capture
To evaluate our task recognition framework, participants commit-
ted to provide annotations during a month-long data collection
period over a course of 20 week days (6 am to 7 pm).1 Our cohort
consisted of ten male and seven female participants. Fourteen par-
ticipants were engaged in a job while three participants had no job
commitments. Twelve of the participants were non-professionals
(e.g. full-time or part-time students) and five were professionals.

The data collection was performed using Android smartphone
apps (RescueTime2 and our sensor data collection app denoted
as sensing-app) and a desktop app (i.e. RescueTime3, to collect
cyber data, i.e., visited Web domains and their categorizations).
Our sensing-app recorded sensor data with the following reading
frequency settings: 50 Hz for accelerometer, magnetometer, and
gyroscope, and 1 Hz for noise level.

To minimize the battery usage of the data collection Android
app, we collected these sensor data within a 30 second time frame,
and a 1-minute gap between frames for no data collection mode.
The collection of sensor data was scheduled from 06:00 AM to 07:00
PM. The participants reported their timestamped tasks through the
ESM (triggered through hourly app notifications, from 10:00 AM
to 07:00 PM). A task entity recognition process can be used on the
1Data collection protocol reviewed and approved by the Human Research Ethics
Committee at RMIT University, ref “SEHAPP 09-18 SALIM-LIONO”.
2https://play.google.com/store/apps/details?id=com.rescuetime.android
3https://www.rescuetime.com/download

in-situ annotations after their boundaries are constructed (refer to
Section 4.2) to assign each reported task to one of the following task
categories (compact categorization derived from American Time
Use Survey (ATUS)4) which includes work-related tasks, personal
tasks, social-exercise-entertainment tasks, caring tasks, and civil
obligations.

5.2 Collected Mobile Sensing Data and Task
Annotations

In our data collection campaign, the protocol for logging mobile
sensing data and its task-capture survey design are reproduced (and
adjusted) from [15] on task intelligence to collect rich pervasive
sensing data. Hence, utilizing the data that we collect (including
personal lifestyles, movement behaviors, and progress of tasks
according to user perception) from real participants will expand
the task understanding beyond this study.

We conducted the task annotations surveys based on an ESM
method since the idea of ESM is to minimize human cognitive bias
while reducing the reliance on participants’ ability to accurately
recall earlier experiences. Specifically, a short questionnaire is sent
through a push notification in an hourly basis aiming to minimize
the interruption to daily activities and tasks. In this study, the
annotations acquired from the ESM process are defined as in-situ
annotations.

5.3 Task Annotations: Non-professionals and
professionals

We perform an exploratory analysis of in-situ task annotations
collected from the ESM hourly surveys. We further expand each
task category into more granular tasks based on a recent study [29]
on work-tasks. Specifically, we assign task annotations given by
the users to one of the following tasks: travel, physical, education,
meals and breaks, communication, planning, project, documenta-
tion, low-level, admin and management, finance, IT (software- or
hardware-related tasks), customer care, and problem solving. Any
task annotations that do not belong to any of these task categories
are relabelled as “other”. The distribution of these tasks are shown
in Figure 3 for both non-professionals and professionals.

After data pre-processing and feature extraction the CPS fea-
ture sets contain a total of 7,653 instances for non-professionals
(on all reported 1,121 in-situ annotations) and 5,271 instances for
professionals (on all reported 721 in-situ annotations), respectively.
Consequently, 62 features are extracted corresponding to each task
label of the instances, consisting of 22 features of 𝐹𝑐 , 21 features of
𝐹𝑝 and 8 features of 𝐹𝑠 .

5.4 Experimental Setup
In order to signify our contributions for CPS activity modeling, we
conduct our study over three different experiment sets:

(1) Work-related tasks: the annotations categorized as “work-
related” are included to perform task recognition (i.e. tasks
associated with main roles/occupations of corresponding
users).

4https://www.bls.gov/news.release/pdf/atus.pdf

https://www.bls.gov/news.release/pdf/atus.pdf
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Figure 3: Frequency of tasks in all categories, for non-professionals and professionals.

(2) Social/exercise/entertainment tasks: the annotations that
belong to tasks related to social events, exercise and relax-
ation are included for identifying the associated tasks.

(3) Personal/caring/civil tasks: the annotations of “caring”
and “civil obligation” related tasks are sparse. Therefore,
these two task categories are grouped with personal tasks
due to the similar nature of these tasks.

For each experiment, we conduct an empirical performance eval-
uation of intelligent task recognition using four settings on both
cohorts of non-professionals and professionals including task recog-
nition based on 𝐹𝑐 , 𝐹𝑝 , 𝐹𝑠 , and task recognition using 𝐹𝑐 , 𝐹𝑝 and 𝐹𝑠
combined.

Task recognition using the CPS feature sets separately are de-
fined as the baselines in our experiment. In our implementation
of intelligent task recognition, we deployed a set of classifiers in-
cluding: Support Vector Machine (SVM), Naïve Bayes, 𝑘-Nearest
Neighbor (𝑘-NN), Logistic Regression Classifier with Restricted
Boltzmann Machine feature extractor (LRC (RBM)), Decision Trees,
and Random Forests. These classifiers are instantiated using the
scikit-learn [20].

5.5 Evaluation
To evaluate and validate the performance of task recognition, strati-
fied five-fold cross-validation was applied. The model for intelligent
task recognition was built based on a person-independent approach.
In other words, our proposed intelligent task recognition frame-
work aimed to discover and distinguish the general tasks of dif-
ferent categories (i.e. work-related, social/exercise/entertainment,
personal/caring/civil) for all mobile users, based on CPS contexts.
In our framework, the internal evaluation process was based on
𝐹1-score which refers to the harmonic mean of precision and recall
of task recognition.

5.5.1 Work-related tasks. For work-related tasks, our experiment
result is validated on the recognition of the following tasks:

• Non-professionals: all task labels [18] except finance, IT
and problem-solving as highlighted in Table 1.

• Professionals: all task labels [18] except customer care and
problem-solving as highlighted in Table 1.

The result in Figure 4 (𝐹1-score) show the imperative perfor-
mance on work-related task recognition when our application is
trained using all CPS features. From the outcome of our empirical
evaluation on the three experiment sets, it is evident that incor-
porating all CPS feature sets together in the process of building a
classifier, will provide better overall predictive performance.

In our experiments, random forests model for non-professionals
cohort achieves the best classifier performance (with 𝐹1-score of
52.06%). On the other hand, the model is also suggested as the best
classifier (with 𝐹1-score of 39.13%) for task recognition. The best
models for both cohorts are attained when they are trained on CPS
feature set.

5.5.2 Social/exercise/entertainment tasks. Our experiment result is
validated on the recognition of the following tasks:

• Non-professionals: travel, physical, education, meals and
breaks, communication, and planning.

• Professionals: travel, physical, education, meals and breaks,
communication, and IT.

We found that random forest model shows the best performance
with 𝐹1-score of 36.99% for professionals. However, the decision
tree model is suggested for professionals since it achieves over-
all 𝐹1-score of 56.44%, which outperforms the random forest by
4.2%. The highest performance can still be achieved by these mod-
els based on the CPS feature set. This result suggests that so-
cial/exercise/entertainment tasks could bemore predictable towork-
related tasks for professionals, and vice-versa for non-professionals.

5.5.3 Recognition of personal/caring/civil tasks. For personal/caring/
civil tasks, the our experiment result is validated on the recognition
of the following tasks:

• Non-professionals: travel, physical, education, meals and
breaks, communication, planning, documentation, admin
and management, IT, and problem solving.

• professionals: travel, physical, education, meals and breaks,
communication, planning, documentation, admin and man-
agement, and finance.

We found that the random forestmodel for professionals achieves
the highest classifier performance (with 𝐹1-score of 51.19%) and is
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Figure 4: Boxplots of 𝐹1-scores on work-related task recognition: non-professionals and professionals.

Figure 5: Overall participant perception of CPS activities on their tasks

also selected as the best model for non-professionals (with 𝐹1-score
of 30.43%). Although such models provide lower overall perfor-
mance for non-professionals, a substantial improvement is still
noticeable when the model is trained using all CPS features.

Furthermore, a general overview of participant perception about
CPS activities on their engaged tasks is reported in Figure 5. From
the survey answers, it is evident that the majority of work-related
tasks (up to 673 tasks) require either cyber activities only or both
cyber and social activities. At least 93 such tasks were reported
requiring all CPS activities in order to progress or complete. For
social/exercise/entertainment related tasks, the many tasks require
only cyber activities. Examples for this set of tasks would be “watch-
ing/browsing youtube videos” or “read online news”. For personal/
caring/civil tasks, a total of 254 tasks were commonly reported as
tasks that require physical activities. However, the lowest count of
30 tasks was reported to require both cyber and social activities,
followed by 38 tasks reported to only requiring cyber activities.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we developed an end-to-end framework to recognize
user tasks based on sensing logs of CPS activities. We presented
the result and analysis of our conducted experiments and showed
that we can recognize tasks by leveraging a range of CPS features.

Specifically, we showed that by incorporating CPS features together
can improve task recognition performance. Task recognition using
our framework can promote the development of future digital as-
sistants, productivity applications, and other intelligent/assistive
technologies which may include interruption support, task man-
agement, and generating task-relevant recommendations to help
users make progress on their tasks.

Future research may include experimenting with richer feature
sets, performing additional user studies (with more users, a broader
portfolio of tasks, and different user cohorts), and integrating our
task recognition methods into technologies to help boost users’ task
efficiency and effectiveness, among other goals. Since privacy could
be an issue for real-world deployment, future research also may
include the ethical and privacy considerations of such in-the-wild
data collection.
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