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ABSTRACT
Voice user interfaces (VUIs) have made their way into people’s
daily lives, from voice assistants to smart speakers. Although VUIs
typically just react to direct user commands, increasingly, they in-
corporate elements of proactive behaviors. In particular, proactive
smart speakers have the potential for many applications, ranging
from healthcare to entertainment; however, their usability in every-
day life is subject to interaction errors. To systematically investigate
the nature of errors, we designed a voice-based Experience Sam-
pling Method (ESM) application to run on proactive speakers. We
captured 1,213 user interactions in a 3-week field deployment in 13
participants’ homes. Through auxiliary audio recordings and logs,
we identify substantial interaction errors and strategies that users
apply to overcome those errors. We further analyze the interaction
timings and provide insights into the time cost of errors. We find
that, even for answering simple ESMs, interaction errors occur fre-
quently and can hamper the usability of proactive speakers and
user experience. Our work also identifies multiple facets of VUIs
that can be improved in terms of the timing of speech.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Empirical studies in interaction design.
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1 INTRODUCTION
Voice user interfaces (VUIs) enable users to interact with computer
systems through speech, facilitating touch-free and eyes-free in-
teractions [22, 46]. Smart speakers are one of the major platforms
that provide VUIs. It is estimated that the global smart speaker
market will reach $19.91 billion in 2024 [3]. In addition to one-
liner commands (e.g., “Hey Google, play music on Spotify”), var-
ious VUI applications are becoming available for the public [9],
such as Amazon Alexa skills for exercise [1, 43] and Google ac-
tions for mental healthcare [2, 17]. VUIs that interact with users
in multi-turn conversations are expected to proliferate in the fu-
ture, supporting tasks such as booking a restaurant, searching for
complex information needs, or providing personal health informa-
tion [9, 10, 16, 52, 57, 67].

Recently, researchers have been considering ways to incorporate
proactivity (i.e., acting in anticipation of future problems, needs, or
changes1) into smart speakers [15, 35, 69]. Proactive speakers are
envisioned to have the capability of initiating conversations and ac-
tively engaging users with speech [69]. Enabling smart speakers to
be proactive can open up a wide range of applications, such as just-
in-time health interventions [19], suggesting search results [4, 67],
and capturing data through conversations [14, 28]. For example,
a system called TandemTrack developed by Luo et al. [43] allows
users to receive proactive voice reminders and self-report exer-
cise data to Amazon Echo. However, through a field deployment,
they identified that frequent voice recognition errors hampered the
system’s usability. While reporting data through voice was conve-
nient, some users’ self-reports could not be accurately recognized
and could trigger random responses. Similarly, other studies also
report frequent recognition and interaction errors of smart speak-
ers [49, 57]. In particular, Kumar et al. [36] suggest that Alexa has an
accuracy rate of only 68.9% on single-word recognition, and many
transcription errors occur unpredictably (i.e., Alexa transcribes
a distinct input word differently). This is concerning as frequent
1https://www.merriam-webster.com/dictionary/proactive

https://doi.org/10.1145/3491102.3517432
https://doi.org/10.1145/3491102.3517432
https://www.merriam-webster.com/dictionary/proactive


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Wei et al.

recognition and interaction errors may make users reluctant to
explore new functionalities or even give up using VUIs [18, 42].

Previous studies have focused on interaction errorswith VUIs [18,
36, 49]. For example, Myers et al. [49] developed a customized VUI
calendar application that allowed users to add and delete calen-
dar events via voice commands. They found that 52.1% of errors
were natural language processing (NLP) errors. Cho and Rader
[18] studied how novice users handled communication breakdowns
with screenless Google Home. While many researchers conduct
controlled studies [18, 30, 49], we have limited knowledge of what
interaction errors could happen in the wild. Especially for proactive
speakers, they are prone to inappropriately initiating conversa-
tions (e.g., noisy background [57], the user is not nearby [43]) as
research on opportune moment predictions of VUIs is still at its
infancy [15, 32, 33]. Both Alexa and Google Home have been found
to perform poorly in a controlled environment [36, 71]. Proactive
speakers may struggle even more to accurately perform speech
recognition, the base of all voice interactions, in everyday life.

Meanwhile, some field user studies that implement VUI appli-
cations [28, 43] have observed interaction and transcription errors
(e.g., music playing is triggered instead of the intended application)
but failed to delve deeper into the root cause of errors and how
users handle them. With the great potential of proactive speakers,
investigating how they perform in the wild is critical. To systemati-
cally investigate interaction and transcription errors, we develop an
interactive proactive speaker prototype based on Google Home and
build a voice-based Experience Sampling Method (ESM) [11, 38]
VUI application to run on the prototype. The ESM includes three 5-
point numerical questions and one open-ended question. Our ESM,
therefore, collects pre-defined and free-form answers, which allows
us to quantifiably measure error rates of both kinds. Additionally,
ESM represents a group of potential VUI applications, such as re-
search data collection tools and self-tracking/reflection systems
that can run on proactive speakers. The results of our study also
help us understand the usability of VUI as a new modality for data
capture in the wild and provide insight into future VUI applications.

Compared to previous studies on interaction errors and commu-
nication breakdowns [8, 30, 49, 57], our research aims to investigate
interaction errors in the wild and quantify those errors through a
case study of a voice ESM application. We deployed our proactive
speaker prototype with the voice ESM application in 13 participants’
homes for three weeks and collected over 1,000 audio recordings
and 30,000 logs. We find that, although our proactive speaker only
needs to recognize limited voice inputs (i.e., number “1” to “5”),
there exist substantial recognition errors that lead to non-smooth
interactions with extended completion time and unexpected ter-
mination errors. The primary contributions of our work are: 1)
extending prior work by quantifying different types of interaction
errors and summarizing user strategies for resolving errors with
the voice ESM application, and 2) synthesizing design implications
for future proactive VUI applications and methodological insights
into researching smart speakers in the wild.

2 RELATEDWORK
In this section, we first review studies that implement proactive
VUIs. Then we focus on existing work investigating VUI errors and

user tactics or strategies to resolve errors. Lastly, we cover prior
research on measuring interactions with smart speakers.

2.1 Proactive VUIs
Existing smart speakers can send voice reminders2; however, they
only allow time-based scheduling of reminders. Poorly-timed voice
reminders may be entirely missed [43] or may cause interruptions
when users are engaged with a different task. Therefore, recent
studies have tried to investigate which moments are suitable to
initiate proactive conversations [15]. As there is no platform to de-
ploy “random” (non-time-based) voice reminders, researchers have
adopted laptops and smartphones to simulate speakers. Komori
et al. [35] used a laptop to serve as a proactive VUI and a Kinect
v2 to track the activity transition of users. They conducted a study
with three participants who lived alone, and the proactive VUI
system intermittently asked participants “Do you have a minute?”
Participants were required to indicate their availability via finger
gestures towards the camera. This way of interaction requires no
audio input from participants. In a 2020 study by Cha et al. [15], a
proactive speaker prototype was developed based on a combination
of a smartphone and a commercial Bluetooth speaker. A voice-based
ESM was scheduled and delivered by the smartphone and publicly
displayed through the Bluetooth speaker. The system would ask
participants “Is now a good time to talk?” and participants verbally
provided their availability and the contextual reasoning. This sys-
tem recorded user responses for one minute, and researchers later
manually transcribed the audio data.

The systems mentioned above were developed to study the tim-
ing of proactive voice interruptions. Therefore, their interrupting
tasks did not trigger multi-turn conversations between users and
speakers. They also relied on post-hoc manual transcription to pre-
vent interaction errors in-situ [15, 32, 33]. As we hypothesize that
interaction errors might occur and extend interaction durations
significantly [57], it is important to make proactive speakers in-
teractive in real-time. From “fake” speakers to usable speakers in
real life, we believe that proactive speaker prototypes should be
built upon existing speech recognition technologies. Henceforth,
we develop proactive speaker prototypes based on the popular off-
the-shelf Google Home, which uses real-time speech recognition
to interact with users.

2.2 Errors in VUIs
Users adopt various techniques for overcoming different errors and
communication breakdowns with VUIs [8, 26, 49]. For instance,
Jiang et al. [30] conducted a study on voice search where partici-
pants used the Google search app on an iPad to observe how the
system actually transcribed their voice input. They found that when
facing errors in recognized voice queries, users would reformulate
their queries with phonetic and lexical changes based on the voice-
to-text transcription they saw.

Besides techniques such as phonetic and lexical changes, other
tactics such as hyperarticulation or simplification are observed [49].
For example, Myers et al. [49] developed a customized VUI calendar
application to investigate how users overcome VUI problems. From
their study, they suggested four major types of interaction errors:
2https://developer.amazon.com/en-US/docs/alexa/smapi/proactive-events-api.html
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unfamiliar intent, NLP error, failed feedback, and system error. The
NLP error is the most common type of error, and they identified that
users adopted strategies such as hyperarticulation, simplification,
or restarting. However, this study was a lab study. Furthermore,
participants were provided with a GUI where they could see if
errors occurred during the interaction.

VUIs deployed on touchscreen devices (e.g., smartphones) al-
low users to see on-screen clues to resolve interaction errors as
voice-to-text transcription is often displayed [40, 57]. However, for
screenless VUIs, such as most smart speakers, users can only rely
on the VUI to remedy errors. In the work by Beneteau et al. [8],
Alexa Echo Dots were deployed in 10 different family homes, and
59 conversational breakdowns were analyzed. The study found that
family members used speech and language repair strategies, such
as over-articulation, increased volume, and repetition, to recover
from those conversational breakdowns. Family members also col-
laborated on repairing the conversations with Alexa. For example,
family members expanded or shortened the voice commands spo-
ken by another member that Alexa did not understand. Cho and
Rader [18] found that screenless Google Home’s fallback response
“Sorry, I’m not sure how to help” did not help users reformulate new
commands and resolve interaction errors. They recognized that new
users of smart speakers might give up trying new commands and
features if users constantly encounter interaction errors. Further,
as suggested by Porcheron et al. [57], no-response from the speaker
also indicates interaction failures, yet it provides no mechanism for
further interaction. All these studies investigated errors to a broad
extent: their participants explored smart speakers and encountered
errors in various domains. It is difficult for researchers to fully un-
derstand why some errors occur and how to optimize the speaker
or VUI applications to reduce the error rate. Through a systematic
evaluation, Kumar et al. [36] find that homophones (e.g., “sail” as
“sell”), compound words (e.g., “outdoors” as “out door”), and words
with phonetic confusions (e.g., “wet” as “what”) are consistently
misrecognized by Alexa, while words with two or three syllables
(e.g., “forecast”) can almost be correctly recognized every time. This
finding suggests that VUI developers can use more “error-robust”
words when constructing dialogues and voice commands for their
applications.

Compared to previous works on VUI errors, we aim to system-
atically measure error occurrence and delve into the root causes
of interaction errors with an ESM application in realistic home
settings.

2.3 Measuring Interactions with Smart
Speakers

Interaction logs and audio recordings are frequently used to investi-
gate smart speaker interactions [5, 9, 18]. For example, Bentley et al.
[9] acquired Google Home interaction logs from their participants’
personal Google accounts. The timestamps and command strings
in these logs were used to categorize the application domains (e.g.,
information, music, home automation) and analyze temporal us-
age patterns of commands. Similarly, Ammari et al. [5] extracted
command texts, timestamps, and device names from the interac-
tion logs of 82 Amazon Alexa and 88 Google Home devices. They
conducted both qualitative and quantitative analyses to understand

how people use smart speakers at home. Analyzing logs is one
way to study the conversations between users and smart speakers;
however, its drawback is that fine-grained interaction details, such
as voice volume and environment noises, cannot be fully learned
through logs. If errors occur, logs may not help explain errors as
users’ speech may not be correctly transcribed [12].

Audio recordings provide additional user interaction data, such
as environmental noise or speech loudness. These audios can often
provide richer qualitative data to understand what is happening in
the background when users are interacting with the smart speaker.
Ideally, video capture can offer very rich data [23], but it can be too
intrusive [66]. Porcheron et al. [57] raised the methodological issue
of conducting studies on smart speakers in peoples’ private homes.
Henceforth, instead of using video, they collected user interaction
data with Amazon Echo with a Conditional Voice Recorder. It is
activated every time the wake-up word “Alexa” is detected and
then captures a 1-minute audio recording. The audio recordings
captured rich interaction data and allowed conversation analysis.

To conclude, popular commercial speakers, including Google
Home and Amazon Echo, remain relatively closed-source [36]. Re-
searchers need to either use real-time audio recording to capture
interactions or rely on the voice history logs provided by the service
providers (Google/Amazon) to refer to the interactions. Cho and
Rader [18] captured both the participant speech and the Google
Home transcriptions (from the logs) to investigate interactions.
Drawn on the existing approaches, we capture both audio record-
ings and interaction logs of our custom action. We, therefore, have
first-hand evidence of user behaviors when they face interaction
errors and speaker event logs simultaneously. Our rich dataset al-
lows us to examine and unveil causes of interaction errors, study
user strategies, and perform temporal analysis of interactions with
proactive speakers.

3 METHOD
We developed a proactive speaker3 to explore how users overcome
interaction errors in the wild. The proactive speaker was based on
the off-the-shelf Google Home and bespoke hardware. We built
a custom Google action called Be Proactive to implement a voice-
based ESM that enquires users about their cognitive contexts. We
can investigate how users interact with proactive speakers and
explore the usability of proactive speakers in the wild with a field
study.

3.1 Hardware Prototype
We developed an external apparatus to “unnoticeably” invoke a
Google Home through the playback of pre-recorded voice com-
mands, starting with “Hey Google, talk to Be Proactive”. We at-
tached a pair of earphones on two visible microphones onto Google
Home, ports fitted through a 3D-printed “tiara” powered by a Rasp-
berry Pi 3B+ as seen in Figure 1. We stored pre-recorded voice
commands in the Raspberry Pi, and those commands were played
whenever we wanted the speaker to be proactive. As earphones
were very closely attached to Google Home, the voice commands
3No commercially available proactive speaker was available at the time of our
investigation.
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Figure 1: Our proactive speaker prototype.

were inaudible to nearby users. The net result is that Google Home
begins talking to users without seemingly being invoked by them.

Pre-recorded voice invocation commandswere issued by a Python
script triggered on a semi-random schedule (the default was 9 AM
to 10 PM, which participants could alter). The Raspberry Pi was
also integrated with a light sensor and a USB microphone. To better
understand the interaction between users and proactive speakers in
the wild, we used the USB microphone to record the real-time inter-
action between users and the speaker. The audio recordings allowed
us to study the in-depth voice interaction, including environmental
contexts, rich accounts of errors, and user behaviors.

3.2 Be Proactive Development
Experience sampling is a widely used research methodology to
collect user data, including people’s thoughts, feelings, behaviors,
and environments [11]. Conventional ESMs usually use the pen
and paper technique or GUIs on smart devices [38, 68]. Proactive
VUIs provide a different modality to initiate ESM enquiries and
record user reports [15, 44]. Thus, ESMs promise to be a good VUI
application to run on proactive speakers. We can investigate how
users interact with proactive speakers and answer ESM questions
through multiple conversation turns.

We used Dialogflow Essentials4 to build Be Proactive. Once being
invoked by the Raspberry Pi’s script, it can proactively start a
multi-turn voice-based ESM that enquires about user’s availability,
boredom, mood, and ongoing activity. These data are all commonly
asked questions in other ESM studies [55, 56]. More specifically,
the four questions of Be Proactive are:

• Question 1 - Rate your availability on a scale of 1 to 5.
• Question 2 - Rate your boredom level on a scale of 1 to 5.
• Question 3 - Rate your current mood on a scale of 1 to 5.
• Question 4 - What are you currently doing?

We designed the ESM questions to be easy to answer and analyze.
For Questions 1 to 3, users need to respond with a number between
4https://dialogflow.cloud.google.com/

1 and 5. For those questions, only when a numerical answer is
given and successfully recognized by the speaker, the next intent
(question) will continue to be asked. In the meantime, user response
and its timestamp will automatically be stored in Firebase Cloud
storage. Close-ended questions with 5-point numerical scales allow
us to conduct quantifiable analysis of recognition errors of numbers.
For Question 4, users can respond with any free-form input. As long
as the speaker recognizes anything, the intent will be completed,
and the speaker will end the interaction with “Thank you for your
time”. Open-ended questions are commonly used in ESM studies to
obtain rich data [68]. We can investigate whether Google Home can
reliably transcribe longer sentences through the implementation of
Question 4.

The invocation command for Be Proactive is “Hey Google talk
to Be Proactive”. To ensure successful external activation, one of
our researchers pre-recorded the voice commands. The audio was
stored in the Raspberry Pi to trigger Google Home to invoke Be
Proactive at the scheduled time proactively.

3.3 Field Study
We advertised our study through our university platform. In total,
we recruited 16 participants through online advertising, who were
either full-time or part-time students. Three participants dropped
out within the first few days due to technical reasons (e.g., frequent
Wi-Fi disconnections) or task burden (e.g., interfering with daily
study time). Hence, we deployed our proactive speakers in 13 par-
ticipants’ homes and collected data over three weeks. All recruited
participants were proficient in English and had prior experience
with Google speakers (Google Home or Google Mini) that ranged
from 1 month to 3 years before the commencement of this study.
Our participants were between 19 and 38 years old (M = 26.6, SD =
4.6), and the gender split was balanced (46.2% female, 53.8% male).
Before the start of the experiment, we conducted a Zoom orienta-
tion session to teach participants how to set up the Raspberry Pi
and instruct them how to answer the voice ESM. We scheduled the
Raspberry Pi to trigger the Be Proactive ESM approximately every
hour between 9 AM to 10 PM (with an 18-min randomized jitter).
Participants could also choose to customize their prompt schedule
to better suit their lifestyle. Four participants (participants P03,
P08, P09, and P11) specified their preferred scheduling time of the
speaker ESM prompts. For P08 and P09, the speakers only prompted
from 10 AM to 10 PM and from 5 PM to 11 PM, respectively; for
P03 and P11, the ESMs were triggered from 8 AM to 11 PM and 9
AM to 12 AM, respectively. The remaining participants received
the ESMs according to our specified default schedule. Completing
one ESM took about 40 seconds if no errors occurred. However,
the answering time varied as users made mistakes or the speaker
might have made recognition issues; therefore, we programmed the
Raspberry Pi to record a 90-second audio snippet whenever it was
scheduled to invoke Be Proactive. This audio recording behavior
was clearly communicated to participants in the consent statement
that they signed. At the end of the three-week study, we conducted
an exit interview with participants over Zoom. All the participants
were compensated with a $50 gift card for completing the whole
study. Ethics approval was obtained from the university’s human
research ethics committee.

https://dialogflow.cloud.google.com/
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3.4 Data Analysis
In total, we received 1,213 ESM entries from 13 participants. Re-
spectively, we have collected around 30 hours of audio recordings
and roughly 30,000 interaction logs. Since this paper is about study-
ing interaction errors, we will only focus on analyzing the rich
interaction data provided by the audio recordings and logs and
will not analyze the meaning of those ESM entries. To study the
interaction between users and proactive speakers and investigate
errors and their causes, we processed the data we collected in three
steps: (1) transcription error identification and correction, (2) audio
recording labeling, and (3) temporal analysis.

3.4.1 Transcription Error Identification and Correction. We first
identify transcription errors in the collected data. The data is stored
in-situ during the study in Firebase Cloud storage and is subse-
quently downloaded by the researchers. We label all user responses
as errors that are not “1”, “2”, “3”, “4”, or “5” for availability, bore-
dom and mood. We consider responses to the final question (“What
are you currently doing?”) to be erroneous if they are inexplicable.
For erroneous answers, we refer to the respective audio recordings
and manually transcribe user responses. And we also try to find
explanations for erroneous answers based on the rich audio data.

3.4.2 Audio Recording Labeling. By default, Google Home has two
system errors: no-input errors and no-match errors. If the speaker
does not receive a response, it issues the no-input error message -
“Sorry, I couldn’t hear what you just said” and repeats the question
on a second attempt. The speaker may also issue the no-match error
message - “Please answer numbers, or you can come closer to me”
to ask users to respond correctly while not repeating the original
question. This error message could either be triggered when the
user response is not correct (e.g., when a user does not respond with
a number between 1 and 5) or when it is not correctly transcribed.
If no valid response is received after three attempts, the speaker
will stop talking and abandon the survey.

When we were correcting erroneous transcriptions, we noticed
that even for fully completed ESMs, many system errors occurred
during the respective interactions. Considering the frequent occur-
rence of system errors and their high time cost, we then decided
to manually listen to all 1,213 audio recordings to label how many
attempts it took for the speaker to successfully receive an answer to
each question. To be precise, if the user answers a question without
triggering any recognition errors, we label this question as success-
fully answered with one attempt; if the user needs to re-answer
a question by triggering one system error, we label this question
as successfully answered with two attempts. In rare cases, when
different error types happen consecutively in response to one ques-
tion, the user can trigger error messages more than three times:
they can try to answer a question at the third attempt and then
trigger a recognition error again. Since this scenario rarely happens,
we group those instances together with those where participants
answered with three attempts.

During the manual inspection and labeling process of all audio
recordings, we made observations of user strategies to overcome
interaction errors. In particular, we examined user strategies that
previous studies have reported, such as repetition, hyperarticula-
tion, or simplification [29, 30, 49, 60]. We noticed that the strategy -

new utterance/answer was used by many participants when they
were waiting for the speaker to respond or facing recognition errors.
For other VUI applications [30, 58], that may be an effective way to
resolve recognition errors; however, in the case of data collection,
this behavior significantly lowers data quality. We, therefore, also
labeled whether a participant changed their initial answer for each
question.

3.4.3 Temporal Analysis. Many previous studies that implement
custom VUI applications have not measured the detailed timing of
interactions [28, 43]. Current smart speakers rely on the cloud to
analyze user speech and generate corresponding responses, which
can introduce latency of one second or longer [47, 57]. If recogni-
tion errors occur, users need to further repeat or reformulate their
speech. With the network delays and error (and its recovery) time
adding up, user burden can be significantly increased [13, 64]. Since
we collect event logs generated during users’ interactions with Be
Proactive, we extract timestamps from each log. We then conduct
a temporal analysis of our data to quantify the precise timing of
interactions.

As described in Section 3.2, every intent enabled with webhooks
generates event logs on Firebase. Each intent during the interaction
runs as a cloud function, and Firebase generates 6 event logs: (1)
Function execution started, (2) Request, (3) Headers, (4) Conversa-
tion, (5) Response, and (6) Function execution finished. The Response
log is generated to flag the speaker’s response to user input (i.e.,
next question in our case). We can extract the timestamp of the Re-
sponse log and consider this timestamp (𝑡𝑠𝑟𝑒𝑠 ) to represent the time
when the next question is issued by Firebase. When each answer is
recorded in the Firebase Cloud storage, a corresponding timestamp
(𝑡𝑠𝑟𝑒𝑐 ) is also recorded. Therefore, we calculate the time difference
between the two timestamps (𝑡𝑠𝑟𝑒𝑐 - 𝑡𝑠𝑟𝑒𝑠 ) and consider this time
gap to represent the participant’s answering time for each question.
We denote the answering time for each question in Figure 2. Based
on the labels we have, we can calculate the answering time for each
question. The answering time includes: the time (i) for the speaker
to receive a response from Google Cloud Function, (ii) it spends
prompting the question, (iii) that the user answers the question,
and (iv) to transcribe the answer by Google Assistant and log it on
Firebase. If errors occur in the interaction, then the answering time
will increase due to the error message and question re-prompting
time. Combined with the labels of attempts (see Section 3.4.2), the
answering time data enables us to understand how long users take
to successfully finish each question (i.e., time on task) and if errors
occur what the time costs of errors are.

As shown in Figure 2, we also denote the time gap between the
answer recording time (𝑡𝑠𝑟𝑒𝑐𝑖 ) and the next question/prompt re-
sponse time (𝑡𝑠𝑟𝑒𝑠𝑖+1 ). This time gap is generated by two sequential,
although not directly causal, events that occur in the cloud during
the interaction, which can indicate the time for backend processing
and routing of webhooks. This metric can examine whether there
are fluctuations in the backend system processing and network
latency. We further infer the network and system delay by calculat-
ing the activation time of our proactive speakers. The Raspberry Pi
generates a timestamp when it runs the activation job to trigger the
speaker. Before the speaker is activated and issues Question 1 from
the ESM, a Google Cloud Function will handle the request from
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Hey Google, talk to Be Proactive

Raspberry Pi

1

Rate your boredom 
level on a scale of 1 to 5

Rate your current mood 
on a scale of 1 to 5

What are you 
currently doing?

2 2 Revising
a paper

Thank you for 
your time!

The time gap between the answer recorded on Firebase and the next question’s 
Response logging time

𝒕𝒔𝒓𝒆𝒄
𝒕𝒔𝒓𝒆𝒔

𝒕𝒔𝒓𝒆𝒔 𝒕𝒔𝒓𝒆𝒔𝒕𝒔𝒓𝒆𝒄 𝒕𝒔𝒓𝒆𝒔

Rate your availability 
on a scale of 1 to 5

𝒕𝒔𝒓𝒆𝒔
𝒕𝒔𝒓𝒆𝒄 𝒕𝒔𝒓𝒆𝒄

Mood 
answering time

Activity 
answering time

Activation time Availability 
answering time

Boredom 
answering time

Figure 2: An example of the conversation flow between the Raspberry Pi, Google Home, and a participant. The solid-lined
arrow denotes the time when Raspberry Pi plays the pre-recorded voice triggers. The double-lined arrow denotes the time
(𝑡𝑠𝑟𝑒𝑠 ) when Google Cloud Function issues the Response log to questions. The dotted-lined arrow (𝑡𝑠𝑟𝑒𝑐 ) denotes the time when
a user response is recorded in the Firebase Cloud storage. The circle denotes the point in time when the smart speaker starts
prompting, for which we have no timestamp.

Google Assistant and generate timestamped logs on Firebase. We
extract the timestamp of Response from all the logs and consider
this timestamp to reflect the point in time when the Cloud Function
finishes processing the intent matching and produces responses.
Therefore, the time difference between the activation job start time
and the Cloud Function Response time is a reflection of both net-
work conditions and cloud service processing time. By analyzing
these two temporal metrics, we gain insights into system delays
that can actually impact user experience [59] but are “invisible” to
both users and developers.

4 RESULTS
4.1 Data Overview
4.1.1 ESM Question Completion Rate. From a total of 3,447 issued
ESM prompts, we collected 1,213 ESM responses. The response
rate to ESM prompts in our study is 35.2%. Among those are 1,213
availability scales (100% completion rate), 1,110 boredom scales
(91.5% completion rate), 1,041 mood scales (85.8% completion rate),
and 1,036 engaged activities (85.4% completion rate) reported by
participants. In the following section, we first present the results
of the temporal analysis; then, we summarize interaction and tran-
scription errors and their respective root causes, we present our
observation of user strategies in the end.

4.1.2 Interaction Time. Analyzing the logs on Firebase, we first
calculate the average answering time for each question of the ESM.
As aforementioned, users need to answer the same question again
if system errors occur. For each question, depending on how many
attempts the speaker takes to record a valid answer, we calculate
the average answering time based on the number of attempts re-
spectively. The time needed to answer each question is shown in
Table 1.

4.1.3 System Processing and Network Latency. During any inter-
action, Google Home needs to remotely recognize user inputs and
generate responses [9], which can sometimes introduce “invisible”
delays. We note that this type of delay has been mentioned in other
work [57, 59, 70], yet it is rarely quantifiably measured [47, 50].
Although we cannot access the internal routing of Google Home
and its cloud service, we infer the backend system processing and
network latency from two metrics: 1) the time gap between the
answer recording and the question issuing, and 2) the activation
time of proactive speakers.

With four ESM questions and one ending phrase, four between-
question time gaps are calculated based on the logging (see 3.4.3).
For each question, the time gap distributions are presented in Fig-
ure 4 with most between-question delays below 0.25 seconds. A
previous study suggests that a 1-second delay can indicate a prob-
lem in both face-to-face and telephone conversations [62]. Although
conversations with speakers are slower than human-to-human con-
versations, an additional 1 second may also deteriorate the user
experience. Therefore, we group delays longer than 1 second to-
gether. It is worthy to note that between the activity response
recorded time and the ending phrase, there are 19 instances that are
over 1 second. The distribution of the activation time is shown in
Figure 3, which is a bimodal distribution, with one peak at around 4
seconds and another peak at around 7 seconds. Furthermore, while
most activation time instances are below 10 seconds, several in-
stances appear to be over 15 seconds (𝑛 = 11). We note that these
values do not include interaction or recognition errors: they are
just the time needed to invoke Be Proactive. Our results suggest
that for a small number of interactions, the “invisible” delays are
not trivial.
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Table 1: The total time (in seconds) taken by the speaker to recognize and record participants’ answers for each question. The
values are: mean (standard deviation, percentage of all responses).

Question All 1 Attempt 2 Attempts 3 Attempts
Q1. Availability 12.65 (7.50, 100%) 9.71 (3.28, 80.19%) 21.53 (3.87, 15.17%) 37.07 (7.34, 4.02%)
Q2. Boredom 9.99 (6.45, 100%)) 8.17 (2.4, 88.9%) 21.01 (5.64, 8.57%) 36.77 (9.62, 2.53%)
Q3. Mood 9.48 (5.45, 100%) 7.91 (2.03, 88.49%) 20.08 (5.1, 10.54%) 38.09 (12.45, 0.97%)
Q4. Activity 8.74 (4.77, 100%) 7.69 (2.49, 93.11%) 20.78 (2.42, 5.91%) 35.48 (1.37, 0.98%)

Figure 3: Activation time is the time needed for routing and
processing on the cloud, before the speaker initiates a con-
versation.

4.2 Interaction Error Categories
When a user responds to the ESM via voice, interaction errors can
happen. Since we have auxiliary audio recordings for every ESM
answering session, we are able to investigate the reasons behind
uncompleted ESM surveys or seemingly erroneous responses. In
this section, we summarize different types of interaction errors that
occurred in the field study.

4.2.1 System Default Errors. We find that the default no-match
errors and no-input error are quite common in our dataset. Gener-
ally, if users do not answer the question prompted by the proactive
speaker, the no-input error will be triggered; if users give non-
number answers to the first three questions of the ESM, the no-
match error will be triggered. However, it is important to note
that these errors are subject to what the Google Home actually
“hears”. For example, if the environment is noisy, the speaker may
“hear” nothing and produce the no-input error despite that the user
actually answers correctly. Also, no-match error can be produced
if the speaker falsely transcribes the user’s numerical input as a

Figure 4: Back-end routing and processing time needed be-
tween two subsequent questions. Delays longer than 1 sec-
ond are grouped into one bin, denoted by the red bar.

non-numerical input (e.g., “2” as “pool”). In fact, given the auxiliary
audio recordings, we find that participants rarely gave false answers
or did not respond to the speaker once they committed to the ESM.
Yet, we discover a substantial amount of system errors. Among
1,036 fully answered ESMs (1,213 ESMs collected), only 62.8% of
those ESMs were completed without triggering any system errors,
23.6% of them were answered with one error triggered, and the
rest (13.6%) were all answered with two or more errors triggered.
The percentage of successfully recorded answers with different
attempts for each question is shown in Table 1. As can be seen,
fewer answers are recorded with three attempts in later questions.
For example, for Questions 3 and 4, less than 1% of answers were
recorded with three attempts. Comparing the answering time with
one attempt and two attempts, we can see that the ESM completion
time will be increased by at least 10 seconds if one error occurs.

4.2.2 Interaction Termination Errors. As aforementioned, if a no-
match or a no-input fallback error message is prompted three times,
the speaker will play the final error message “Sorry, I can’t help” and
terminate the interaction. In our study, such an early termination
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of the interaction can result in incomplete ESM surveys. Since this
type of early termination is caused by consecutive system errors,
we categorize it as an Accumulative Termination (AT). Before in-
specting audio recordings, we originally assumed most incomplete
ESMs were prematurely terminated because of consecutive sys-
tem errors. However, we find another type of error actually caused
more early terminations of the ESM, which we refer it as Sudden
Termination (ST). To answer the first three questions of the ESM
survey, participants were required to give numerical answers. We
observe that numbers “1”, “2”, “3”, “4”, “5” are sometimes wrongly
recognized as several other words. For example, we find that “2”
can be recognized as words with similar pronunciations, including
“pool”, “tattoo”, “true”, “3” can be recognized as “train”, and “5” can
be recognized as “bye”. By default, a wrongly recognized response
(e.g., “2” recognized as “pool”) should trigger the no-match error;
however, we notice that the wrongly recognized words (e.g., “pool”)
would invoke Google’s default Map searching function. Instead of
triggering the fallback error message, the speaker terminates the
ESM application and proceeds to announce nearby pool addresses.
For the case of a wrongly recognized number “5” as “bye”, the “end
of conversation” is directly triggered, the speaker subsequently says
“goodbye” (or other farewell messages) to users, and the ESM is
then terminated. Lastly, we find network or timeout issues during
the cloud connection would also cause sudden termination of the
ESM. Usually, the speaker would prompt a timeout error message
“There was a glitch, try again in a few seconds” then stop the ESM
entirely.

With our manual inspection of the audio recordings, we calculate
the frequency of ATs and STs in our dataset. We find that there
are 30 instances when participants attempted to answer the ESM
(these instances were not included in Table 2), but Be Proactive
was prematurely ended due to ATs (𝑛 = 6) and STs (𝑛 = 24). In
other words, our participants tried to answer more ESMs, yet they
were stopped by termination errors, which could only be found by
manually inspecting the audio recordings. Among 177 recorded yet
incomplete ESM responses, 14.4% of terminations are caused by
ATs, and 85.6% are caused by STs. The prevalence of STs is quite
unexpected. For each participant, the termination error percentages
are presented in Table 2. It is worthy to note that STs occur pretty
often for almost half of the participants, and ATs occur relatively
more frequently for P08 and P09. Additionally, we observe that
many participants changed their initial answers during the course
of responding to the proactive speakers. Therefore, we also include
how often people changed their answer across multiple attempts
at the same question in Table 2.

4.3 Data Entry Error Categories
Prior studies suggest that a successfully recorded answer may be
incorrectly transcribed and need manual correction [43]. Here, we
present the summary of transcription errors in our dataset.

4.3.1 Erroneous Numerical Answers. For the first three questions,
we consider any recorded answers that are out of the range of 1 to
5 to be erroneous; for the last question, which accepts free-form
text, we consider any illogical/inexplicable answers to be erroneous.
We manually identify transcription errors from recorded answers
and then use the auxiliary audio recordings as the ground truth to

correct answers that contain errors. Furthermore, we infer potential
causes that lead to transcription errors. Examples of erroneous
transcriptions can be found in Table 3.

For numerical answers, the percentage of transcription errors
is quite low: seven erroneous availability answers (0.2%), eight
erroneous boredom answers (0.7%), and three erroneous mood
answers (0.3%). We identify three types of transcription errors. The
first type is double responses and this error is more common than
other errors and occurs ten times in total. Double responses occur
because participants repeat their answers while waiting for the
next question. The end result is that the speaker captures both
utterances and treats them as a single response. We notice that the
time gap between two repeated answers ranges from 1 second to
7 seconds.

The second error type is wrong transcription, and it occurs three
times. This is a situation where the participant’s response is indeed
valid, but the speaker’s transcription is inaccurate. As shown in
Table 3, one error instance is that one participant answered “ah. . . 4”
and we assume that the speaker misinterpreted that as “one fourth”
and recorded “0.25” on Firebase.

Lastly, the third error type is a false positive error. This error
occurs when the speaker captures answers from a source other
than the participant. For instance, in one case, the response was
captured from a video that the participant was playing at the time
when the question was asked.

4.3.2 Erroneous Open-ended Answers. Question 4 has the high-
est 1-attempt answer recording rate, but transcription errors are
much more prevalent in its free-form answers. For a total of 1,036
recorded activity answers, we find that 24.7% need to be manually
corrected. We also identify four types of transcription errors: par-
tially missing (2.4%), partially incorrect (12.0%), totally incorrect
(9.3%), and extra information (1.0%). For each type, one transcrip-
tion error example is presented in Table 3. Ultimately, transcription
errors are directly caused by incorrect speech recognition. However,
partially missing and extra information errors can also be accounted
for factors such as environmental noise, Google Home’s timeout
window (5 seconds) of listening for inputs, and participants trying
to repeat their responses (to get their speech recognized). We origi-
nally assumed that VUIs are more advantageous in administering
open-ended questions compared to GUIs [24], as speaking is faster
and more effortless than typing [61]. However, as transcription
errors are prevalent, researchers should weigh the benefits of using
open-ended questions against the high cost of manual correction
efforts. For different transcription errors, the recovery difficulty
also varies. In our dataset, answers categorized as totally incorrect
are unlikely to be recovered through solely manual speculation
(e.g., “eating” transcribed as “Ethan”). Such correction must rely
on using the auxiliary audio recording. For answers categorized
as partially incorrect or partially missing (e.g., “I’m joking email”
can be corrected as “I’m checking email”), it was still possible to re-
cover those answers without referring to auxiliary audio recordings
(assuming the examiner is familiar with speech recognition limita-
tions, e.g., “joking” is phonetically similar to “checking”). Lastly, we
find that while longer free-form answers are more likely to contain
transcription errors, they are easier to recover as they usually have
more semantic contexts [7].



What Could Possibly Go Wrong When Interacting with Proactive Smart Speakers? CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 2: The frequency of different types of error occurrence in logged 1,213 ESMs for each participant. AT: Accumulative
Termination; SE: Sudden Termination; Changes: responses where answers where changed between attempts.

Participant ID P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 Total
ESM responses 153 113 113 88 62 88 153 26 39 60 28 200 90 1213
AT (%) 3.9 0 0 1.1 3.2 5.7 1.3 7.7 12.8 0 0 1.0 1.1 2.1
ST (%) 1.3 2.7 5.3 6.8 8.1 26.1 0.7 23.1 25.6 43.3 7.1 17.5 26.7 12.3
Changes (%) 11.8 0.9 6.2 2.3 3.2 17.0 3.3 11.5 15.4 3.3 3.6 22.5 3.3 9.1

Table 3: Transcription error examples.

Error Type Real Answer Transcribed Answer
Numeric Response: Double response 2 (3-sec gap) 2 22
Numeric Response: Wrong transcription ah. . . 4 0.25
Numeric Response: False positive error (noise) 0
Open-Ended Response: Totally incorrect have some meeting zombie eating
Open-Ended Response: Partially missing I’m reading some essays reading some
Open-Ended Response: Partially incorrect watering my plants watering my friends
Open-Ended Response: Extra information watching videos watching watching videos

4.4 User Strategies
As aforementioned, 14.6% of the collected ESM responses are in-
complete due to premature termination, and among complete ESM
responses, 37.2% of those ESM interactions encountered at least
one system error. As the frequency of interaction error occurrences
is not trivial, we have observed and categorized four strategies
adopted by our participants to resolve errors through manual in-
spection of the auxiliary audio recordings: (i) raising voice and
approaching, (ii) repeating, (iii) phonetic and lexical changes, and (iv)
help from others. Some of our participants’ exit interview data fur-
ther confirm their use of these strategies. We show the breakdown
of user strategies adopted by different participants in Table 4.

Table 4: User strategies adopted by different participants.

Strategy Participants
Raising Voice and Approaching P01, P02, P07, P09, P12, P13
Repetition P01, P02, P03, P04, P05, P07,

P12, P13
Lexical Changes (Close-ended) P01, P03, P04, P05, P06, P07,

P08, P09, P10, P11, P12
Lexical Changes (Open-ended) P01, P02, P03, P07, P08, P09,

P13
Help from Others P08, P09, P10, P13

4.4.1 Raising Voice and Approaching. By inspecting the auxiliary
audio recordings, we are able to hear users’ voices and responses.
We find that when facing recognition errors or delays in response
from the speaker, among 13 participants, 6 participants used rais-
ing voice and approaching to resolve interaction errors. Usually,
when participants’ first response was not recognized and trig-
gered a no-match/no-input error, they would raise their voice in
each subsequent attempt [8]. Similar to raising voice, another com-
monly used strategy is approaching the speaker or looking at the

speaker [37, 39, 54]. While it remained unknown where our par-
ticipants looked when interacting, the USB microphone captured
(seemingly) door opening/closing sound and footstep sound. We,
therefore, infer that some participants would enter the room where
they installed the proactive speaker to answer the ESM better. Alter-
natively, they would try to answer the ESM initially in-situ and get
closer to the speaker if encountering recognition errors during the
interaction. In one audio recording of P02, the participant initially
answered the last question and headed out of the bedroom (where
he put the proactive speaker). However, as he did not receive the
ending prompt after going out, he returned to the bedroom to repeat
his answer and then left the bedroom the second time. Previous
studies have suggested that this kind of user strategy is the most
common way to resolve errors [42, 49]. However, less than half
of our participants were found to use these two strategies. One
reason could be that, compared to controlled lab studies [49], the
interaction with proactive speakers in the wild can occur when
users are not nearby. Users may raise their voices when responding,
but such behavior could fail to be captured by the USB microphone
due to the distance or background noise.

4.4.2 Repetition. Previous studies suggest that repetition is used
when users sense extended delays when waiting for voice agents’
responses [54, 57]. Such strategy - repetition is also observed in our
audio recordings. In total, we find 8 participants having the habit of
repeating their responses when facing “silence” from the speaker.
While some participants could patiently wait until the speaker
prompts the next question, others tended to repeat their answers
if they received no “quick” response from the speaker. This may
suggest that participants have different sensitivities to delays, and
people who like to repeat may treat the “silence” as an indication
of interaction failures [57, 58]. Past works suggest that repetition
is usually accompanied with rephrasing as users may assume the
delay is a sign of incorrect requests or the no-match error [42, 49].
In our case, participants were well aware of the “requests” they
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can use (at least for the numerical scale questions), and hence the
no-match error is not possible. Thus, the repetition can suggest that
participants treat the long no-response delay as an indication of a
no-input error, i.e., their responses are not “heard” by the speaker.
However, from the data collection point of view, this strategy can
give a rise to more double-response transcription errors of numbers
(𝑛 = 11) (see Table 3).

4.4.3 Phonetic and Lexical Changes. Previous work has found that
users would reformulate their voice query both lexically and pho-
netically when responding to input errors [30, 42]. In our study,
we also observe participants adjusting their answers when facing
system errors. For numerical answers, two phonetic changes are
observed from the auxiliary audio recording: slow down and change
pronunciation. Such phonetic changes are further confirmed by the
exit interview. During the interview, a few participants mentioned
that the speaker had an issue recognizing their answers, and they
had to adopt a “more standard” pronunciation of English.

Other than adjusting the pronunciation, the audio recording
allows us to find that some participants even changed their initial
answers when receiving no response from the speaker or encoun-
tering default system errors. As can been seen in Table 2, changing
answers is quite prevalent. In total, 110 ESMs contain changed an-
swers, which is 9.1% of the entire dataset. For the three 5-point
close-ended questions, all participants, except P02, changed their
initial answers during the course of responding. Especially for par-
ticipants P01, P06, and P12, their ESM responses include many
recorded answers that differ from their initial answers. This finding
again echos prior work that demonstrates how users would refor-
mulate requests to get the speaker to work [57]; however, in the
context of voice ESM, the reformulation equals to changed answers.
One interesting instance is from an audio clip of P12: when facing
no response from the speaker, this participant tried to repeat his
initial answer first, and later literally uttered all the numbers (1, 2, 3,
4, 5) to get the speaker to recognize his answer. In other words, the
participant’s main goal is to get one recognizable answer recorded
rather than giving the genuine answer.

For the open-ended Question 4, participants can give any free-
form answers. Therefore, as long as the no-input error is not trig-
gered, the speaker can record participants’ answers. While there
was more room for participants to reformulate their answers, very
few recorded Q4 answers were changed answers. For a total of
1,036 recorded activity answers, our manual inspection finds that
18 recorded answers (1.7%) differ from participants’ initial answers,
and 7 participants have used lexical change as a way to resolve
interaction errors. Based on lexical query reformulation patterns
pointed out in previous studies and our own observations, we sum-
marize four reformulation patterns: addition [30], removal [30],
word substitution [29, 65], and total change. Compared to previous
studies, the only new reformulation is the total change, which refers
to giving an entirely new answer on the second or third attempt.
This reformulation, similar to the change of numerical answers,
while it resolves the interaction error, can negatively impact the
data quality. We exemplify the lexical reformulations of Q4 answers
in Table 5. In contrast to participants who shortened their speech to
resolve errors in other studies [31, 54], our participants sometimes
expanded their responses to Question 4.

4.4.4 Help from Others. One unexpected strategy is found to be
the help from others. Besides three participants, all others live with
cohabitants (family members or roommates) at home. In particular,
the smart speaker was shared among the family for some partici-
pants. Our proactive speaker cannot perform person identification,
and anyone can answer the ESM survey. When manually inspecting
audio recordings, we notice that some ESM surveys were (partially)
completed by the participant’s partner or child. We also observe
that this “replacement” in answering questions happened in differ-
ent ways. For example, if the participant was not available for the
ESM, their partner sometimes answered the entire ESM. Alterna-
tively, the participant could answer the ESM initially, and if system
errors occurred during the ESM session, their partners sometimes
would try to answer the ESM with a louder voice or a different
tone. Existing literature also describes similar collaborative efforts
in rephrasing voice requests and commands to resolve interaction
errors [8, 57, 58].

5 DISCUSSION
We agree with previous studies [43, 44] that smart speakers can
be a promising new platform that provides a new modality (voice)
to capture data. After all, our proactive speakers have successfully
collected 1,036 complete ESMs from 13 participants under vary-
ing environmental conditions. However, our results suggest that
collecting data through smart speakers can be challenging as the
interactions are sometimes non-smooth and overly extended due to
interaction errors. Also, the data quality can be compromised due to
interaction errors (e.g., transcription errors) and the resulting user
strategies. In the following, we discuss our findings, focusing on
both technical and social aspects. We also discuss implications for
future VUI application designs and research around smart speakers.

5.1 Technical Issues
Currently, smart speakers’ speech recognition and response gener-
ation are all processed over the cloud. Therefore, network latency
can happen [47] and sometimes introduce significant delays in in-
teractions [57]. Timing is vital in the interactions with smart speak-
ers [6], and the “silence” of speakers is considered as an indication
of errors [25, 57]. In our study, we show that the activation time
of Be Proactive is a bimodal distribution with one peak at around 4
seconds and another peak at around 7 seconds (see Figure 3). We
speculate that the bimodal distribution is caused by the user input
being sent to servers in two different locations. To end-users, the
extra 3 seconds needed to activate a custom VUI application can
lead to confusion and impatience [48]. Further, if the network delay
happens during an interaction, the smart speaker’s “silence” can
result in some users continuously repeating an answer. Repetition
can further cause the speaker to continue listening to the new in-
put and sending this new information to the cloud for processing,
which generally worsens the delay. Therefore, to reduce latency, it
seems important to deploy the VUI application server close to the
location of the targeted users [48].

Before manually inspecting audio data, we assumed incomplete
ESMs were caused by consecutive recognition errors, i.e., AT. How-
ever, we also identified another termination error - ST, caused by
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Table 5: Lexical reformulation observed in Q4 answers.

Strategy Original Answer Changed Answer Explanation
Addition studying studying for tomorrow’s exam added more details
Removal studying and listening to music studying removed “listening to music”
Word substitution eating having snacks expanded the phrase
Total change studying chatting with friends changed the entire activity

the erroneous triggering of the map search function or other ap-
plications. For example, when “2” is recognized as “pool”, instead
of prompting the no-match error message, the speaker would an-
nounce nearby pool locations. It appeared that the map search
function (and other application activations) were treated as a global
intent phrase by Google Home (i.e., it can be triggered at any point
of a conversation with the speaker), which overrode the no-match
response. Interestingly, STs occurred much more frequently than
ATs. We find that the amount of STs increased for later participants.
In this study, P01 was the first to participate from late Septem-
ber to mid-October 2020, and for the remaining 12 participants,
three groups of four people participated in similar overlapping
time periods, e.g., P02 to P05 participated from late October to
mid-November. We assume that Google updated their algorithms
during our study and the new intent matching mechanism caused
the high occurrence of STs. Unfortunately, Google’s algorithms and
their updates are invisible to us [18, 57]. One way to mitigate the
impact of such errors is to improve the design of VUI applications
by selecting more error-robust words and phrases, which will be
discussed later.

5.2 Interaction Errors and User Behaviors
In our dataset, we collected 1,213 ESMs, and 14.4% of them were
actually incomplete due to ATs and STs. Even for 1,036 complete
ESMs, only 62.8% of them were completed without any interaction
errors. In Table 2, we show the occurrence of STs and ATs for
each participant. Overall, ATs occur infrequently (2.1%). Very few
ESMs are incomplete due to system errors being consecutively
triggered more than three times. On the other hand, STs appear
to be more frequent (12.3%). Theoretically, STs should never occur
as the Fallback intent would be triggered if a “non-number” is
recognized or given by the user for Q1 to Q3. Since ATs were caused
by accumulative incorrect speech recognition across attempts, more
frequent STs could stop ATs from happening. In other words, people
who are more likely to trigger recognition errors should, in theory,
encounter more ATs; however, the accumulative recognition errors
are prevented due to STs. Consistent with previous studies [28, 43],
our participants reported that such unexpected app triggering and
termination were very confusing.

Both termination errors and recognition errors can impact par-
ticipants’ answer quality. For example, a few participants reported
that they noticed the speaker “had trouble recognizing 2” and, there-
fore, they tried to “avoid answering 2 afterwards” during the exit
interview. Also, when facing in-situ recognition errors, many par-
ticipants used the changing answers strategy and the help from
others strategy to resolve errors. However, those strategies can im-
perceptibly lower data quality. For the former one, users are trying

to give a “recognizable" rather than a “valid" answer during the
interaction [21]; for the latter one, the recorded answers do not
originate from targeted users. Our findings are in line with previous
studies that suggest frequent interaction failures can alter users’
ways of interacting with VUIs and discourage them from using
VUIs [18, 42, 43].

In Table 2, we also present the ESM response counts and changed
answer rate for each participant. While we do believe that recog-
nition errors can drive users to change answers when facing er-
rors [49] or give up interactions [42], we fail to observe any obvious
correlations between termination errors and user response counts
and changed answer rates. We requested participants to answer
ESMswhenever they could. So, it is possible that even if participants
encountered many interaction errors, they still tried to answer the
ESMs whenever they could as they were participating in a study.
Another possibility is that after experiencing some recognition
errors, some participants only gave answers that they considered
were more easily recognized [9, 63] to avoid errors beforehand, but
such behaviors may not be reflected in our short-term study. Addi-
tionally, the high percentage of STs stopped more ATs (consecutive
and time-consuming recognition errors). Participants with higher
ST rates may have not yet understood why such error occurred [43].
Therefore, they did not change answers to “recognizable” ones dur-
ing the interaction.

Lastly, we would like to point out the time cost of interaction
errors. The answering time presented in Table 1 suggests that an
ESM session can be significantly extended if participants need to
answer a question with two or three attempts. The interaction time
can be more than tripled if users encounter two or more errors in
one session. Extended interaction time caused by system errors
negatively impacts the user experience [20, 54] and increases the
user burden [43].

5.3 Implications for VUI Applications
ESM applications can be promising to run on proactive speakers.
To capture higher quality data, we suggest that ESM surveys should
include more close-ended questions. We use the 5-point numerical
scale in our ESM, and we find numbers, particularly “2” and “4”,
cannot be correctly transcribed at times. Numbers under five are
mostly short, single-syllable words, which are likely to have lower
recognition accuracy as suggested in [27, 36]. The use of pre-defined
labels may be more suitable than numbers. For example, “1”, “2”,
“3”, “4”, “5” can be replaced by “worst”, “upset”, “neutral, “good”,
and “excellent”. But while the word “good” has an accuracy rate of
99.9% [36] the usability of other words still need to be evaluated.
Furthermore, we suggest that ESM surveys should include fewer
open-ended questions. While we find fewer in-situ systems errors
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are triggered at Question 4 (“What are you currently doing?”), 26.4%
of the reported activity data requires manual correction with the
use of auxiliary audio recordings. The extensive occurrence of tran-
scription errors for free-form text requires considerable amounts of
human effort for post-analysis. The high cost of human transcrip-
tion can limit the scale of data collection. Lastly, we recommend that
proactive VUI applications should consider enabling the use of the
start/end sound of requests5, i.e., users will hear a sound when the
speaker starts listening to commands and after the speaker is done
listening to requests. As the interaction with proactive speakers
can happen when the speaker is out of sight, the start/end sound
can give users audio cues.

On a more general level, we recommend developers use more
error-robust words in the dialogue design of their VUI applications.
While speech recognition technology is advancing, interaction er-
rors are unlikely to entirely disappear [60]. Once proactive speakers
are used in people’s homes, interactions are likely to be initiated at
inopportune moments, such as when the environment is not quiet.
Also, users can have a wider range of accents [34]. Essentially, both
ATs and STs are caused by incorrect speech transcription. There-
fore, the usability of VUI applications can be enhanced if voice
commands are well constructed with words that have higher accu-
racy rates. For example, the voice commands should incorporate
words with two or three syllables (e.g., “forecast”) and avoid using
too many short, single-syllable words and words with homophones
(e.g., “bean”) [12, 27, 36, 51].

5.4 Implications for VUI Research
During the investigation of interaction errors, we find that the aux-
iliary audio recordings provide rich data. First, we used the audio
recordings as the “ground truth” of answers to correct transcription
errors. When facing recorded errors such as “0” and “85”, we ini-
tially assumed that participants gave “1” and “5”. Given the audio
recording, we discovered that those recorded answers were actu-
ally from the noise in the background. Similarly, we did not expect
participants’ family members to answer the ESM for them. This
“replacement” would go otherwise undetected if we only relied on
recorded answers or logs. Also, we presumed that most incomplete
ESMs were caused by consecutive system errors (AT). However, we
find that STs occur four times more frequently than ATs with the
real-time recording. Furthermore, we realize that measuring voice
interaction should not only focus on the “conversation” but also
include user behaviors such as their speech loudness and the rate
of speech or movements and interactions with people within the
speaker’s vicinity [8, 57]. Microphones are used in many previous
studies to understand how users speak to the device and learn how
people collaborate together to resolve interaction errors. In our
study, even though the multi-turn interaction remains relatively
simple, the audio recording still helps us learn many trivial yet im-
portant aspects of voice interactions in the wild. Luo et al. [43] used
the smart speaker to collect self-reported data and mentioned that
their participants needed to manually correct their records. In this
case, if there were audio recordings, the user struggle could be cap-
tured. On the other hand, audio recordings also introduce privacy
concerns. Our system accidentally recorded one participant’s kid’s
5https://support.google.com/assistant/answer/9071787

voice, which suggests that future VUI researchers should weigh
the benefits of rich audio information against privacy implications.
Maybe researchers can consider studying a family as a unit, or the
targeted participants can be provided with audio recordings so that
they can choose whether they want to delete certain recordings.

Cho and Rader [18] collected two sources of data: what the user
said and what the speaker heard. For studying errors with custom
VUI applications, we suggest adding another important piece of
information: the logs generated by VUI applications. In this study,
we extract timestamps from logs of Be Proactive and study both the
answering time and the system processing and network latency.
Learning about the interaction time helps us identify user effort in
answering a question. Learning about the system processing and
network latency further helps us understand the user burden. Our
empirical data suggests that the time gaps (see Figure 4) mostly re-
mained at 100-200 ms level, but some could be longer than 1 second,
especially for the delay between activity response record time and
the ending prompt Response log time. When a 1-sec delay is intro-
duced during an interaction, users may consider it is them, rather
than the device, that has caused an interaction failure [57]. Under-
standing at which part delays are generated may reveal shortages
of today’s framework of smart speakers and offer opportunities
for the development of future smart speakers. Therefore, future
research should also try to collect time information, especially the
back-end processing time.

6 LIMITATIONS AND FUTUREWORK
In this study, we investigate interaction errors that occurred in a
3-week field voice ESM study of 13 participants. Throughmanual in-
spection, we have identified different interaction and transcription
errors as well as user strategies to overcome errors by analyzing
logs, recorded ESMs, and audio recordings. While our analysis is
mainly based on manual labeling and audio recordings, it should be
noted that this method is limited. One missed opportunity is that
we did not capture logs stored in Google’s My Activity. In other
words, we did not have first-hand evidence of what the Google
Home actually “heard”. This limits us to developing further under-
standing of the Google Home’s speech recognition capability. By
referencing logs and recorded data, we may miss some interaction
trouble as there is a margin of human errors in manual labeling.
Also, microphones are unable to fully depict people’s interactions
with smart speakers [45]. Our interpretations of user strategies are
based on limited information and may not reflect the intention of
users [41]. Further, we later identified that the USB microphone we
used was unstable in different environments and captured some
hardware noises produced by the Raspberry Pi. We could not ac-
curately count user strategies (e.g., raising voice) and quantify the
correlation between environmental noises and interaction errors.
Therefore, we adopted a more qualitative approach in summarizing
user strategies. Henceforth, future research should try to collect
Google Activity logs if possible, use higher-grade microphone ar-
rays to capture richer information (e.g., Angle of Arrival, volumes)
of interactions, or even involve participants in the process of map-
ping and interpreting errors [42].

The unexpected high occurrence of STs and frequent recogni-
tion errors of simple numbers unveil that existing smart speakers

https://support.google.com/assistant/answer/9071787
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may still face usability issues. But since our investigation of in-
teraction errors is based on a voice ESM application on Google
Home, we acknowledge that our findings cannot be generalized
to all VUI applications and speaker platforms (e.g., Amazon, Ap-
ple). We believe it is necessary to conduct more empirical user
studies [71] to quantify and understand interaction errors both in
the lab and in the field. For example, a future study with a wider
range of participants can consist of two phases. In a controlled
environment (i.e., no background noise, identical speaker setting,
and fixed distance to the speaker), researchers can first measure
the baseline of users’ error rates with speakers and investigate the
impact of accents and speaking styles [27, 36, 53]. Then, researchers
can deploy speakers in people’s homes to investigate whether users’
error rates and behaviors will be impacted by the environment (e.g.,
room layouts, ambient noises, the presence of other people). To
gain more general insights into interaction errors with speakers,
different types of VUI applications can be designed and evaluated,
such as ESM applications with various question types (e.g., 7-point
scales and word scales) and applications that proactively prompt
voice intervention messages to engage users [19]. Finally, another
direction to pursue is to study how to reduce the error rate by
augmenting speakers with sensors, such as motion sensors or cam-
eras. Sensors can make proactive speakers more context-aware and
initiate interactions at opportune moments to reduce the impact
from the environment [15, 43]. Camera and other recording devices
can capture more detailed user behaviors (e.g., moving and head
orientation) around speakers and help us further understand the
interaction [54].

7 CONCLUSION
We present an in the wild case study (i.e., in participants’ homes)
with proactive speakers to investigate interaction errors and user
recovery strategies. We examine how users overcome encountered
errors while answering voice ESMs. We deployed our ESM applica-
tion for three weeks with 13 participants and analyzed collected
audio recordings of all the interactions between participants and
the proactive speaker. With 1,213 ESMs collected, we demonstrate
that proactive speakers can capture data via multi-turn conversa-
tions. However, our analyses of interaction errors suggest that, even
though the implemented ESM application required the speaker only
to recognize numbers, interaction errors occurred more frequently
than expected. While ultimately, almost all interaction errors were
caused by incorrect transcriptions, some errors led to increased user
burden and caused abrupt termination of ESMs. Therefore, further
research needs to carefully design the VUI applications for data
collections. We give specific design recommendations for future
voice ESM applications and then discuss implications for more gen-
eral VUI applications and VUI research methodology. We hope this
work can spark future reactive and proactive speakers studies to
explore errors during voice interactions. Ultimately, lessons learned
from errors can contribute to making smart speakers more usable.
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